The diflerential coeflicient of a sum or diflerence

is the summ cur atillismemose wit the diliesmationl quatilciernts uf the sepmente termrs.

 strated im the followwime wrorked promblemes.

```
Problean 1. Hined the difierential comenicients
af: (a) \(y=12 x^{3} \quad\) (b) \(y=\frac{12}{x^{3}}\)
```

If $y=\operatorname{cas}^{n}$ then $\frac{d y}{d y}=\operatorname{anc} x^{n-1}$
(a) Since $y=12 x^{3} x a=12$ and $x=3$ thus $\frac{d y}{d x}=(12)(3) x^{3}=36 x^{2}$
(G) $y=\frac{12}{x^{3}}$ is mewritten in the stamdand cacm from ass $y \stackrel{A}{=} 12 x^{-3}$ and in the peneral nule $x=12$ and $m=-3$

Thus $\quad \frac{d y}{d x}=(12)(-3) x^{-3-1}$

$$
=-36 x^{-4}=-\frac{36}{x^{4}}
$$

PROBLEM 2 Differentiate
$y=5 x^{4}+4 x-\frac{x}{2 x^{2}}+\frac{x}{\sqrt{x}}-3$ with respect
to x

SOLUTION
$y=5 x^{4}+4 x-\frac{1}{2 x^{2}}+\frac{1}{\sqrt{x}}-3$ is rewritten as
$y=5 x^{4}+4 x-\frac{1}{2} x^{-2}+x^{-1 / 2}-3$
When differentiating a sum, each term is differenti ated in turn.
Thus $\frac{d y}{d x}=(5)(4) x^{4-1}+(4)(1) x^{1-1}-\frac{1}{2}(-2) x^{-2-1}$

$$
+(1)\left(-\frac{1}{2}\right) x^{(-1 / 2)-1}-0
$$

$$
=20 x^{3}+4+x^{-3}-\frac{1}{2} x^{-3 / 2}
$$

i.e $\frac{d y}{d x}=20 x^{3}+4-\frac{1}{x^{3}}-\frac{1}{2 \sqrt{x^{3}}}$

Differentiation of a product

When $y=u v$, and u and v are both functions of x,
then $\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
This is known as the product rule.

EXAMPLE 1 Find the differential coefficient of
$y=3 x^{2} \sin 2 x$

SOLUTION

$3 x^{2} \sin 2 x$ is a product of two terms $3 x^{2}$ and $\sin 2 x$
Let $u=3 x^{2}$ and $v=\sin 2 x$

Using the product rule:

$$
\begin{aligned}
& \frac{d y}{d x}=\begin{array}{l}
u \\
\downarrow
\end{array} \frac{d v}{d x}+\underset{\downarrow}{\downarrow}+\begin{array}{c}
v \\
\downarrow \\
\downarrow
\end{array} \\
& \text { gives: } \quad \frac{d y}{d x}=\left(3 x^{2}\right)(2 \cos 2 x)+(\sin 2 x)(6 x) \\
& =6 x(x \cos 2 x+\sin 2 x)
\end{aligned}
$$

EXAMPLE 2 Differentiate: $y=x^{3} \cos 3 x \ln x$

SOLUTION

Let $u=x^{3} \cos 3 x$ (i.e. a product) and $v=\ln x$
Then $\quad \frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
where $\quad \frac{d u}{d x}=\left(x^{3}\right)(-3 \sin 3 x)+(\cos 3 x)\left(3 x^{2}\right)$
and $\quad \frac{d v}{d x}=\frac{1}{x}$
Hence $\frac{d y}{d x}=\left(x^{3} \cos 3 x\right)\left(\frac{1}{x}\right)$

$$
+(\ln x)\left[-3 x^{3} \sin 3 x+3 x^{2} \cos 3 x\right]
$$

Differentiation of a quotient

When $y=\frac{u}{v}$, and u and v are both functions of x
\square
This is known as the quotient rule.
EXAMPLE Find the differential coefficient of
$y=\frac{4 \sin 5 x}{5 x^{4}}$

SOLUTION
$\frac{4 \sin 5 x}{5 x^{4}}$ is a quotient. Let $u=4 \sin 5 x$ and $v=5 x^{4}$
(Note that v is always the denominator and u the numerator)

$$
\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

where $\quad \frac{d u}{d x}=(4)(5) \cos 5 x=20 \cos 5 x$
and $\quad \frac{d v}{d x}=(5)(4) x^{3}=20 x^{3}$
Hence $\quad \frac{d y}{d x}=\frac{\left(5 x^{4}\right)(20 \cos 5 x)-(4 \sin 5 x)\left(20 x^{3}\right)}{\left(5 x^{4}\right)^{2}}$

$$
=\frac{100 x^{4} \cos 5 x-80 x^{3} \sin 5 x}{25 x^{8}}
$$

$$
=\frac{20 x^{3}[5 x \cos 5 x-4 \sin 5 x]}{25 x^{8}}
$$

i.e. $\quad \frac{d y}{d x}=\frac{4}{5 x^{5}}(5 x \cos 5 x-4 \sin 5 x)$

CLASS WORK Find the differential coefficient of

1. $\frac{2 \cos 3 x}{x^{3}} \quad\left[\frac{-6}{x^{4}}(x \sin 3 x+\cos 3 x)\right]$
2. $\frac{2 x}{x^{2}+1} \quad\left[\frac{2\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}}\right]$
3. $\frac{3 \sqrt{\theta^{3}}}{2 \sin 2 \theta} \quad\left[\frac{3 \sqrt{\theta}(3 \sin 2 \theta-4 \theta \cos 2 \theta)}{4 \sin ^{2} 2 \theta}\right]$

ASSGINMENT Find the differential coefficient of
4. $\frac{\ln 2 t}{\sqrt{t}} \quad\left[\frac{1-\frac{1}{2} \ln 2 t}{\sqrt{t^{3}}}\right]$
5. $\frac{2 x e^{4 x}}{\sin x}\left[\frac{2 e^{4 x}}{\sin ^{2} x}\{(1+4 x) \sin x-x \cos x\}\right]$

